home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 15
/
CU Amiga Magazine's Super CD-ROM 15 (1997)(EMAP Images)(GB)[!][issue 1997-10].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gxclmem.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-06-11
|
32KB
|
920 lines
/* Copyright (C) 1995, 1996, 1997 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gxclmem.c */
/* RAM-based command list implementation */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxclmem.h"
/*
* Based on: memfile.c Version: 1.4 3/21/95 14:59:33 by Ray Johnston.
* Copyright assigned to Aladdin Enterprises.
*/
/*****************************************************************************
This package is more or less optimal for use by the clist routines, with
a couple of the more likely to change "tuning" parameters given in the
two macros below -- NEED_TO_COMPRESS and GET_NUM_RAW_BUFFERS. Usually
the NEED_TO_COMPRESS decision will be deferred as long as possible based
on some total system free RAM space remaining.
The data structures are in "memfile.h", and the primary 'tuning' parameter
is MEMFILE_DATA_SIZE. This should not be too small to keep the overhead
ratio of the block structures to the clist data small. A value of 16384
is probably in the ballpark.
The concept is that a memory based "file" is created initially without
compression, with index blocks every MEMFILE_DATA_SIZE of the file. The
primary blocks (used by the memfile_fseek logic) for indexing into the
file are called 'logical' (LOG_MEMFILE_BLK) and the data in stored in a
different block called a 'physical' block (PHYS_MEMFILE_BLK). When the
file is not yet compressed, indicated by (f->phys_curr==NULL), then there
is one physical block for each logical block. The physical block also has
the 'data_limit' set to NULL if the data is not compressed. Thus when a
file is not compressed there is one physical block for each logical block.
COMPRESSION.
When compression is triggered for a file then all of the blocks except
the last are compressed. Compression will result in a physical block
that holds data for more than one logical block. Each logical block now
points to the start of compressed data in a physical block with the
'phys_pdata' pointer. The 'data_limit' pointer in the physical block is
where the compression logic stopped storing data (as stream data
compressors are allowed to do). The data for the logical block may span
to the next physical block. Once physical blocks are compressed, they are
chained together using the 'link' field.
The 'f->phys_curr' points to the block being filled by compression, with
the 'f->wt.ptr' pointing to the last byte filled in the block. These are
used during subsequent compression when the last logical block of the
file fills the physical block.
DECOMPRESSION.
During reading the clist, if the logical block points to an uncompressed
physical block, then 'memfile_get_pdata' simply sets the 'pdata' and the
'pdata_end' pointers. If the logical block was compressed, then it may
still be resident in a cache of decompression buffers. The number of these
decompression buffers is not critical -- even one is enough, but having
more may prevent decompressing blocks more than once (a cache_miss). The
number of decompression buffers, called "raw" buffers, that are attempted
to allocate can be changed with the GET_NUM_RAW_BUFFERS macro, but no
error occurs if less than that number can be allocated.
If the logical block still resides in a decompression cache buffer, then
the 'raw_block' will identify the block. If the data for a logical block
only exists in compressed form, then the "tail" of the list of decompression
buffers is re-used, marking the 'raw_block' of the logical block that was
previously associated with this data to NULL.
Whichever raw decompression buffer is accessed is moved to the head of the
decompression buffer list in order to keep the tail of the list as the
"least recently used".
There are some DEBUG global static variables used to count the number of
cache hits "tot_cache_hits" and the number of times a logical block is
decompressed "tot_cache_miss". Note that the actual number of cache miss
events is 'f->log_length/MEMFILE_DATA_SIZE - tot_cache_miss' since we
assume that every logical block must be decmpressed at least once.
Empirical results so far indicate that if one cache raw buffer for every
32 logical blocks, then the hit/miss ratio exceeds 99%. Of course, the
number of raw buffers should be more than 1 if possible, and in many
implementations (single threaded), the memory usage does not increase
during the page output step so almost all of memory can be used for
these raw buffers to prevent the likelihood of a cache miss.
Of course, this is dependent on reasonably efficient clist blocking
during writing which is dependent on the data and on the BufferSpace
value which determines the number of clist band data buffers available.
Empirical testing shows that the overall efficiency is best if the
BufferSpace value is 1,000,000 (as in the original Ghostscript source).
[Note: I expected to be able to use smaller buffer sizes for some cases,
but this resulted in a high level of thrashing...RJJ]
LIMITATIONS.
The most serious limitation is caused by the way 'memfile_fwrite' decides
to free up and re-initialize a file. If memfile_fwrite is called after
a seek to any location except the start of the file, then an error is
issued since logic is not present to properly free up on a partial file.
This is not a problem as used by the 'clist' logic since rewind is used
to position to the start of a file when re-using it after an 'erasepage'.
Since the 'clist' logic always traverses the clist using fseek's to ever
increasing locations, no optimizations of backward seeks was implemented.
This would be relatively easy with back chain links or bi-directional
"X-OR" pointer information to link the logical block chain. The rewind
function is optimal and moves directly to the start of the file.
********************************************************************************/
/*
The need to compress should be conditional on the amount of available
memory, but we don't have a way to communicate this to these routines.
Instead, we simply start compressing when we've allocated more than
COMPRESSION_THRESHOLD amount of data. The threshold should be at
least as large as the fixed overhead of the compressor plus the
decompressor, plus the expected compressed size of a block that size.
*/
private const long COMPRESSION_THRESHOLD = 300000;
#define NEED_TO_COMPRESS(f)\
((f)->ok_to_compress && (f)->total_space > COMPRESSION_THRESHOLD)
/* FOR NOW ALLOCATE 1 raw buffer for every 32 blocks (at least 8) */
#define GET_NUM_RAW_BUFFERS( f ) \
max(f->log_length/MEMFILE_DATA_SIZE/32, 8)
#define MALLOC(f, siz, cname)\
(void *)gs_alloc_bytes((f)->data_memory, siz, cname)
#define ALLOCATE(vptr, f, cname, msg)\
vptr = MALLOC(f, sizeof(*(vptr)), cname);\
if ( !(vptr) ) {\
eprintf(msg);\
return_error(gs_error_VMerror);\
}\
(f)->total_space += sizeof(*(vptr))
#define FREE(f, obj, cname)\
(gs_free_object((f)->data_memory, obj, cname),\
(f)->total_space -= sizeof(*(obj)))
/* Structure descriptor for GC */
private_st_MEMFILE();
/* forward references */
private void memfile_free_mem(P1(MEMFILE *f));
private int memfile_init_empty(P1(MEMFILE *f));
/************************************************/
/* #define DEBUG /- force statistics -/ */
/************************************************/
#ifdef DEBUG
long tot_compressed;
long tot_raw;
long tot_cache_miss;
long tot_cache_hits;
long tot_swap_out;
/*
The following pointers are here only for helping with a dumb debugger
that can't inspect local variables!
*/
byte *decomp_wt_ptr0, *decomp_wt_limit0;
const byte *decomp_rd_ptr0, *decomp_rd_limit0;
byte *decomp_wt_ptr1, *decomp_wt_limit1;
const byte *decomp_rd_ptr1, *decomp_rd_limit1;
#endif
/* ---------------- Open/close/unlink ---------------- */
int
memfile_fopen(char *fname, const char *fmode,
clist_file_ptr /*MEMFILE **/ *pf, gs_memory_t *mem, bool ok_to_compress)
{
MEMFILE *f;
int code;
/* We don't implement reopening an existing file. */
if ( fname[0] != 0 || fmode[0] != 'w' )
return_error(gs_error_invalidfileaccess);
/* There is no need to set fname in this implementation, */
/* but we do it anyway. */
fname[0] = (ok_to_compress ? 'a' : 'b');
fname[1] = 0;
f = gs_alloc_struct(mem, MEMFILE, &st_MEMFILE,
"memfile_open_scratch(MEMFILE)");
if ( f == NULL ) {
eprintf1("memfile_open_scratch(%s): gs_alloc_struct failed\n", fname);
return_error(gs_error_VMerror);
}
f->memory = mem;
#ifdef USE_C_HEAP_FOR_DATA
f->data_memory = &gs_memory_default;
#else
f->data_memory = mem;
#endif
/*
* Disregard the ok_to_compress flag, since the size threshold gives us
* a much better criterion for deciding when compression is appropriate.
*/
f->ok_to_compress = /*ok_to_compress*/ true;
f->compress_state = 0; /* make clean for GC */
f->decompress_state = 0;
if ( f->ok_to_compress ) {
const stream_state *compress_proto = clist_compressor_state(NULL);
const stream_state *decompress_proto = clist_decompressor_state(NULL);
const stream_template *compress_template = compress_proto->template;
const stream_template *decompress_template = decompress_proto->template;
f->compress_state =
gs_alloc_struct(mem, stream_state, compress_template->stype,
"memfile_open_scratch(compress_state)");
f->decompress_state =
gs_alloc_struct(mem, stream_state, decompress_template->stype,
"memfile_open_scratch(decompress_state)");
if ( f->compress_state == 0 || f->decompress_state == 0 ) {
eprintf1("memfile_open_scratch(%s): gs_alloc_struct failed\n", fname);
return_error(gs_error_VMerror);
}
memcpy(f->compress_state, compress_proto,
gs_struct_type_size(compress_template->stype));
f->compress_state->memory = mem;
memcpy(f->decompress_state, decompress_proto,
gs_struct_type_size(decompress_template->stype));
f->decompress_state->memory = mem;
if ( compress_template->set_defaults )
(*compress_template->set_defaults)(f->compress_state);
if ( decompress_template->set_defaults )
(*decompress_template->set_defaults)(f->decompress_state);
}
f->total_space = 0;
/* init an empty file */
if( (code = memfile_init_empty(f)) != 0 )
return_error(code);
#ifdef DEBUG
/* If this is the start, init some statistics. */
/* Hack: we know the 'a' file is opened first. */
if( *fname == 'a' ) {
tot_compressed = 0;
tot_raw = 0;
tot_cache_miss = 0;
tot_cache_hits = 0;
tot_swap_out = 0;
}
#endif
*pf = f;
return 0;
}
int
memfile_fclose(clist_file_ptr cf, const char *fname, bool delete)
{
MEMFILE *f = (MEMFILE *)cf;
/* We don't implement closing without deletion. */
if ( !delete )
return_error(gs_error_invalidfileaccess);
memfile_free_mem(f);
gs_free_object(f->memory, f->decompress_state,
"memfile_close_and_unlink(decompress_state)");
gs_free_object(f->memory, f->compress_state,
"memfile_close_and_unlink(compress_state)");
gs_free_object(f->memory, f, "memfile_close_and_unlink(MEMFILE)");
return 0;
}
int
memfile_unlink(const char *fname)
{
/*
* Since we have no way to represent a memfile other than by the
* pointer, we don't (can't) implement unlinking.
*/
return_error(gs_error_invalidfileaccess);
}
/* ---------------- Writing ---------------- */
private int
compress_log_blk( MEMFILE *f, LOG_MEMFILE_BLK *bp )
{
int status;
long compressed_size;
byte *start_ptr;
PHYS_MEMFILE_BLK *newphys;
/* compress this block */
f->rd.ptr = (const byte *)(bp->phys_blk->data) - 1;
f->rd.limit = f->rd.ptr + MEMFILE_DATA_SIZE;
bp->phys_blk = f->phys_curr;
bp->phys_pdata = (char *)(f->wt.ptr) + 1;
if ( f->compress_state->template->reinit != 0 )
(*f->compress_state->template->reinit)(f->compress_state);
compressed_size = 0;
start_ptr = f->wt.ptr;
status = (*f->compress_state->template->process)(f->compress_state,
&(f->rd), &(f->wt), true );
bp->phys_blk->data_limit = (char *)(f->wt.ptr);
if( status == 1 ) { /* More output space needed (see strimpl.h) */
/* allocate another physical block, then compress remainder */
compressed_size = f->wt.limit - start_ptr;
ALLOCATE(newphys, f, "memfile newphys",
"compress_log_blk : MALLOC for 'newphys' failed\n");
newphys->link = NULL;
bp->phys_blk->link = newphys;
f->phys_curr = newphys;
f->wt.ptr = (byte *)(newphys->data) - 1;
f->wt.limit = f->wt.ptr + MEMFILE_DATA_SIZE;
start_ptr = f->wt.ptr;
status = (*f->compress_state->template->process)(f->compress_state,
&(f->rd), &(f->wt), true );
if( status != 0 ) {
eprintf("Compression required more than one full block!\n");
return_error(gs_error_Fatal);
}
newphys->data_limit = (char *)(f->wt.ptr);
}
compressed_size += f->wt.ptr - start_ptr;
if( compressed_size > MEMFILE_DATA_SIZE ) {
eprintf2("\nCompression didn't - raw=%d, compressed=%ld\n",
MEMFILE_DATA_SIZE, compressed_size);
}
#ifdef DEBUG
tot_compressed += compressed_size;
#endif
return(0);
} /* end "compress_log_blk()" */
/* Internal (private) routine to handle end of logical block */
private int
memfile_next_blk( MEMFILE *f )
{
LOG_MEMFILE_BLK *bp = f->log_curr_blk;
LOG_MEMFILE_BLK *newbp;
PHYS_MEMFILE_BLK *newphys, *oldphys;
if( f->phys_curr == NULL ) { /* means NOT compressing */
/* allocate a new block */
ALLOCATE(newphys, f, "memfile newphys",
"memfile_next_blk: MALLOC 1 for 'newphys' failed\n");
newphys->link = NULL;
newphys->data_limit = NULL; /* raw */
ALLOCATE(newbp, f, "memfile newbp",
"memfile_next_blk: MALLOC 1 for 'newbp' failed\n");
bp->link = newbp;
newbp->link = NULL;
newbp->raw_block = NULL;
f->log_curr_blk = newbp;
/* check if need to start compressing */
if ( NEED_TO_COMPRESS(f) ) {
#ifdef DEBUG
eprintf("Beginning compression\n");
#endif
/* compress the entire file up to this point */
if ( !f->compressor_initialized ) {
int code = 0;
if ( f->compress_state->template->init != 0 )
code = (*f->compress_state->template->init)(f->compress_state);
if ( code < 0 )
return_error(gs_error_VMerror); /****** BOGUS ******/
if ( f->decompress_state->template->init != 0 )
code = (*f->decompress_state->template->init)
(f->decompress_state);
if ( code < 0 )
return_error(gs_error_VMerror); /****** BOGUS ******/
f->compressor_initialized = true;
}
/* Write into the new physical block we just allocated, */
/* replace it after the loop (after some blocks are freed) */
f->phys_curr = newphys;
f->wt.ptr = (byte *)(newphys->data) - 1;
f->wt.limit = f->wt.ptr + MEMFILE_DATA_SIZE;
bp = f->log_head;
while( bp != newbp ) { /* don't compress last block */
int code;
oldphys = bp->phys_blk;
if( (code = compress_log_blk(f,bp)) != 0 )
return_error( code );
FREE(f, oldphys, "memfile_next_blk(oldphys)");
bp = bp->link;
} /* end while( ) compress loop */
/* Allocate a physical block for this (last) logical block */
ALLOCATE(newphys, f, "memfile newphys",
"memfile_next_blk: MALLOC 2 for 'newphys' failed\n");
newphys->link = NULL;
newphys->data_limit = NULL; /* raw */
} /* end convert file to compressed */
newbp->phys_blk = newphys;
f->pdata = newphys->data;
f->pdata_end = newphys->data + MEMFILE_DATA_SIZE;
} /* end if NOT compressing */
/* File IS being compressed */
else {
int code;
oldphys = bp->phys_blk; /* save raw phys block ID */
/* compresses bp on phys list */
if( (code = compress_log_blk(f,bp)) != 0 )
return_error( code );
ALLOCATE(newbp, f, "memfile newbp",
"memfile_next_blk: MALLOC 2 for 'newbp' failed\n");
bp->link = newbp;
newbp->link = NULL;
newbp->raw_block = NULL;
/* Re-use the raw phys block for this new logical blk */
newbp->phys_blk = oldphys;
f->pdata = oldphys->data;
f->pdata_end = f->pdata + MEMFILE_DATA_SIZE;
f->log_curr_blk = newbp;
} /* end else (when we are compressing) */
return( 0 );
}
int
memfile_fwrite_chars(const void *data, uint len, clist_file_ptr cf)
{
const char *str = (const char *)data;
MEMFILE *f = (MEMFILE *)cf;
uint count = len;
int status;
/* check if we are writing to the start of the file. If so, then */
/* free the file memory and re-initialize it (frees memory) */
if( f->log_curr_pos == 0 ) {
memfile_free_mem( f );
memfile_init_empty( f );
}
if( f->log_curr_blk->link != 0 ) {
eprintf(" Write file truncate -- need to free physical blocks.\n");
}
while( count ) {
uint move_count = f->pdata_end - f->pdata;
if ( move_count == 0 ) {
if( (status = memfile_next_blk( f )) != 0 ) {
f->error_code = status;
return( 0 );
}
} else {
if ( move_count > count )
move_count = count;
memmove(f->pdata, str, move_count);
f->pdata += move_count;
str += move_count;
count -= move_count;
}
}
f->log_curr_pos += len;
f->log_length = f->log_curr_pos; /* truncate length to here */
#ifdef DEBUG
tot_raw += len;
#endif
return(len);
}
/* */
/* Internal routine to set the f->pdata and f->pdata_end pointers */
/* for the current logical block f->log_curr_blk */
/* */
/* If data only exists in compressed form, allocate a raw buffer */
/* and decompress it. */
/* */
private int
memfile_get_pdata( MEMFILE *f )
{
int i, num_raw_buffers, status;
LOG_MEMFILE_BLK *bp = f->log_curr_blk;
if( bp->phys_blk->data_limit == NULL ) {
/* Not compressed, return this data pointer */
f->pdata = (bp->phys_blk)->data;
i = f->log_curr_pos % MEMFILE_DATA_SIZE; /* pos within block */
i = f->log_curr_pos - i; /* base of block */
if( i+MEMFILE_DATA_SIZE > f->log_length )
f->pdata_end = f->pdata + f->log_length - i;
else
f->pdata_end = f->pdata + MEMFILE_DATA_SIZE;
}
else {
/* data was compressed */
if( f->raw_head == NULL ) {
/* need to allocate the raw buffer pool */
num_raw_buffers = GET_NUM_RAW_BUFFERS( f );
ALLOCATE(f->raw_head, f, "memfile raw buffer",
"memfile_get_pdata: MALLOC for 'raw_head' failed\n");
f->raw_head->back = NULL;
f->raw_tail = f->raw_head;
f->raw_tail->log_blk = NULL;
for( i=0; i<num_raw_buffers; i++ ) {
f->raw_tail->fwd = (RAW_BUFFER *) MALLOC(f, sizeof(RAW_BUFFER),
"memfile raw buffer");
/* if MALLOC fails, then just stop allocating */
if( ! f->raw_tail->fwd ) break;
f->total_space += sizeof(RAW_BUFFER);
f->raw_tail->fwd->back = f->raw_tail;
f->raw_tail = f->raw_tail->fwd;
f->raw_tail->log_blk = NULL;
}
f->raw_tail->fwd = NULL;
num_raw_buffers = i+1; /* if MALLOC failed, then OK */
#ifdef DEBUG
eprintf1("\nNumber of raw buffers allocated=%d\n", num_raw_buffers );
#endif
} /* end allocating the raw buffer pool (first time only) */
if( bp->raw_block == NULL ) {
#ifdef DEBUG
tot_cache_miss++; /* count every decompress */
#endif
/* find a raw buffer and decompress */
if( f->raw_tail->log_blk != NULL ) {
/* This block was in use, grab it */
#ifdef DEBUG
tot_swap_out++;
#endif
f->raw_tail->log_blk->raw_block = NULL; /* data no longer here */
f->raw_tail->log_blk = NULL;
}
/* Use the last raw block in the chain (the oldest) */
f->raw_tail->back->fwd = NULL; /* disconnect from tail */
f->raw_tail->fwd = f->raw_head; /* new head */
f->raw_head->back = f->raw_tail;
f->raw_tail = f->raw_tail->back;
f->raw_head = f->raw_head->back;
f->raw_head->back = NULL;
f->raw_head->log_blk = bp;
/* Decompress the data into this raw block */
/* Initialize the decompressor */
if ( f->decompress_state->template->reinit != 0 )
(*f->decompress_state->template->reinit)(f->decompress_state);
/* Set pointers and call the decompress routine */
f->wt.ptr = (byte *)(f->raw_head->data) - 1;
f->wt.limit = f->wt.ptr + MEMFILE_DATA_SIZE;
f->rd.ptr = (const byte *)(bp->phys_pdata) - 1;
f->rd.limit = (const byte *)bp->phys_blk->data_limit;
#ifdef DEBUG
decomp_wt_ptr0 = f->wt.ptr;
decomp_wt_limit0 = f->wt.limit;
decomp_rd_ptr0 = f->rd.ptr;
decomp_rd_limit0 = f->rd.limit;
#endif
status = (*f->decompress_state->template->process)
(f->decompress_state, &(f->rd), &(f->wt), true );
if( status == 0 ) { /* More input data needed */
/* switch to next block and continue decompress */
int back_up = 0; /* adjust pointer backwards */
if( f->rd.ptr != f->rd.limit ) {
/* transfer remainder bytes from the previous block */
back_up = f->rd.limit - f->rd.ptr;
for( i=0; i<back_up; i++ )
*(bp->phys_blk->link->data - back_up + i) = *++f->rd.ptr;
}
f->rd.ptr = (const byte *)bp->phys_blk->link->data - back_up - 1;
f->rd.limit = (const byte *)bp->phys_blk->link->data_limit;
#ifdef DEBUG
decomp_wt_ptr1 = f->wt.ptr;
decomp_wt_limit1 = f->wt.limit;
decomp_rd_ptr1 = f->rd.ptr;
decomp_rd_limit1 = f->rd.limit;
#endif
status = (*f->decompress_state->template->process)
(f->decompress_state, &(f->rd), &(f->wt), true );
if( status == 0 ) {
eprintf("Decompression required more than one full block!\n");
return_error(gs_error_Fatal);
}
}
bp->raw_block = f->raw_head; /* point to raw block */
} /* end if( raw_block == NULL ) meaning need to decompress data */
else {
/* data exists in the raw data cache, if not raw_head, move it */
if( bp->raw_block != f->raw_head ) {
/* move to raw_head */
/* prev.fwd = this.fwd */
bp->raw_block->back->fwd = bp->raw_block->fwd;
if( bp->raw_block->fwd != NULL )
/* next.back = this.back */
bp->raw_block->fwd->back = bp->raw_block->back;
else
f->raw_tail = bp->raw_block->back; /* tail = prev */
f->raw_head->back = bp->raw_block; /* head.back = this */
bp->raw_block->fwd = f->raw_head; /* this.fwd = orig head */
f->raw_head = bp->raw_block; /* head = this */
f->raw_head->back = NULL; /* this.back = NULL */
#ifdef DEBUG
tot_cache_hits++; /* counting here prevents repeats since */
/* won't count if already at head */
#endif
}
}
f->pdata = bp->raw_block->data;
f->pdata_end = f->pdata + MEMFILE_DATA_SIZE;
/* NOTE: last block is never compressed, so a compressed block */
/* is always full size. */
} /* end else (when data was compressed) */
return(0);
}
/* ---------------- Reading ---------------- */
int
memfile_fread_chars(void *data, uint len, clist_file_ptr cf)
{
char *str = (char *)data;
MEMFILE *f = (MEMFILE *)cf;
uint count = len, num_read, move_count;
num_read = f->log_length - f->log_curr_pos;
if( count > num_read )
count = num_read;
num_read = count;
while( count ) {
f->log_curr_pos++; /* move into next byte */
if( f->pdata == f->pdata_end ) {
f->log_curr_blk = (f->log_curr_blk)->link;
memfile_get_pdata( f );
}
move_count = f->pdata_end - f->pdata;
if ( move_count > count )
move_count = count;
f->log_curr_pos += move_count - 1; /* new position */
memmove(str, f->pdata, move_count);
str += move_count;
f->pdata += move_count;
count -= move_count;
}
return( num_read );
}
/* ---------------- Position/status ---------------- */
int
memfile_ferror_code(clist_file_ptr cf)
{
return( ((MEMFILE *)cf)->error_code ); /* errors stored here */
}
long
memfile_ftell(clist_file_ptr cf)
{
return( ((MEMFILE *)cf)->log_curr_pos );
}
void
memfile_rewind(clist_file_ptr cf, bool discard_data, const char *ignore_fname)
{
MEMFILE *f = (MEMFILE *)cf;
if ( discard_data ) {
memfile_free_mem(f);
/* We have to call memfile_init_empty to preserve invariants. */
memfile_init_empty(f);
} else {
f->log_curr_blk = f->log_head;
f->log_curr_pos = 0;
memfile_get_pdata( f );
}
}
int
memfile_fseek(clist_file_ptr cf, long offset, int mode, const char *ignore_fname)
{
MEMFILE *f = (MEMFILE *)cf;
long i, block_num, new_pos;
switch( mode ) {
case SEEK_SET: /* offset from the beginning of the file */
new_pos = offset;
break;
case SEEK_CUR: /* offset from the current position in the file */
new_pos = offset + f->log_curr_pos;
break;
case SEEK_END: /* offset back from the end of the file */
new_pos = f->log_length - offset;
break;
default:
return (-1);
}
if ( new_pos < 0 || new_pos > f->log_length )
return -1;
if( (f->pdata == f->pdata_end) && (f->log_curr_blk->link != NULL) ) {
/* log_curr_blk is actually one block behind log_curr_pos */
f->log_curr_blk = f->log_curr_blk->link;
}
block_num = new_pos / MEMFILE_DATA_SIZE;
i = f->log_curr_pos / MEMFILE_DATA_SIZE;
if ( block_num < i ) /* if moving backwards, start at beginning */
{ f->log_curr_blk = f->log_head;
i = 0;
}
for ( ; i < block_num; i++ )
{ f->log_curr_blk = f->log_curr_blk->link;
}
f->log_curr_pos = new_pos;
memfile_get_pdata( f ); /* pointers to start of block */
f->pdata += new_pos - (block_num * MEMFILE_DATA_SIZE);
return 0; /* return "normal" status */
}
/* ---------------- Internal routines ---------------- */
private void
memfile_free_mem( MEMFILE *f )
{
LOG_MEMFILE_BLK *bp, *tmpbp;
#ifdef DEBUG
/* output some diagnostics about the effectiveness */
if( tot_raw > 100 ) {
eprintf2("\n\ttot_raw=%ld, tot_compressed=%ld\n",
tot_raw, tot_compressed );
}
if( tot_cache_hits != 0 ) {
eprintf3("\n\tCache hits=%ld, cache misses=%ld, swapouts=%ld\n",
tot_cache_hits,
tot_cache_miss - (f->log_length/MEMFILE_DATA_SIZE), tot_swap_out);
}
tot_raw = 0;
tot_compressed = 0;
tot_cache_hits = 0;
tot_cache_miss = 0;
tot_swap_out = 0;
#endif
/* Free up memory that was allocated for the memfile */
bp = f->log_head;
/******************************************************************
* The following was the original algorithm here. This algorithm has a bug:
* the second loop references the physical blocks again after they have been
* freed.
******************************************************************/
#if 0 /**************** ****************/
if ( bp != NULL ) {
/* Free the physical blocks that make up the compressed data */
PHYS_MEMFILE_BLK *pphys = (f->log_head)->phys_blk;
if( pphys->data_limit != NULL ) {
/* the data was compressed, free the chain of blocks */
while( pphys != NULL ) {
PHYS_MEMFILE_BLK *tmpphys = pphys->link;
FREE(f, pphys, "memfile_free_mem(pphys)");
pphys = tmpphys;
}
}
}
/* free the logical blocks */
while( bp != NULL ) {
/* if this logical block was not compressed, free the phys_blk */
if( bp->phys_blk->data_limit == NULL ) {
FREE(f, bp->phys_blk, "memfile_free_mem(phys_blk)");
}
tmpbp = bp->link;
FREE(f, bp, "memfile_free_mem(log_blk)");
bp = tmpbp;
}
#else /**************** ****************/
# if 1 /**************** ****************/
/****************************************************************
* This algorithm is correct (we think).
****************************************************************/
if ( bp != NULL ) {
/* Null out phys_blk pointers to compressed data. */
PHYS_MEMFILE_BLK *pphys = bp->phys_blk;
{ for ( tmpbp = bp; tmpbp != NULL; tmpbp = tmpbp->link )
if ( tmpbp->phys_blk->data_limit != NULL )
tmpbp->phys_blk = 0;
}
/* Free the physical blocks that make up the compressed data */
if( pphys->data_limit != NULL ) {
/* the data was compressed, free the chain of blocks */
while( pphys != NULL ) {
PHYS_MEMFILE_BLK *tmpphys = pphys->link;
FREE(f, pphys, "memfile_free_mem(pphys)");
pphys = tmpphys;
}
}
}
/* Now free the logical blocks, and any uncompressed physical blocks. */
while( bp != NULL ) {
if( bp->phys_blk != NULL ) {
FREE(f, bp->phys_blk, "memfile_free_mem(phys_blk)");
}
tmpbp = bp->link;
FREE(f, bp, "memfile_free_mem(log_blk)");
bp = tmpbp;
}
/***********************************************************************
* This algorithm appears to be both simpler and free of the bug that
* occasionally causes the older one to reference freed blocks; but in
* fact it can miss blocks, because the very last compressed logical block
* can have spill into a second physical block, which is not referenced by
* any logical block.
***********************************************************************/
# else /**************** ****************/
{ PHYS_MEMFILE_BLK *prev_phys = 0;
while ( bp != NULL ) {
PHYS_MEMFILE_BLK *phys = bp->phys_blk;
if ( phys != prev_phys ) {
FREE(f, phys, "memfile_free_mem(phys_blk)");
prev_phys = phys;
}
tmpbp = bp->link;
FREE(f, bp, "memfile_free_mem(log_blk)");
bp = tmpbp;
}
}
# endif /**************** ****************/
#endif /**************** ****************/
f->log_head = NULL;
/* Free any internal compressor state. */
if ( f->compressor_initialized ) {
if ( f->decompress_state->template->release != 0 )
(*f->decompress_state->template->release)(f->decompress_state);
if ( f->compress_state->template->release != 0 )
(*f->compress_state->template->release)(f->compress_state);
f->compressor_initialized = false;
}
/* free the raw buffers */
while( f->raw_head != NULL ) {
RAW_BUFFER *tmpraw = f->raw_head->fwd;
FREE(f, f->raw_head, "memfile_free_mem(raw)");
f->raw_head = tmpraw;
}
}
private int
memfile_init_empty( MEMFILE *f )
{
PHYS_MEMFILE_BLK *pphys;
/* File empty - get a physical mem block (includes the buffer area) */
f->phys_curr = NULL; /* flag as file not compressed */
ALLOCATE(pphys, f, "memfile pphys",
"memfile_init_empty: MALLOC for 'pphys' failed\n");
pphys->data_limit = NULL; /* raw data for now */
ALLOCATE(f->log_curr_blk, f, "memfile log blk",
"memfile_init_empty: MALLOC for log_curr_blk failed\n");
f->log_head = f->log_curr_blk;
f->log_curr_blk->link = NULL;
f->log_curr_blk->phys_blk = pphys;
f->log_curr_blk->phys_pdata = NULL;
f->log_curr_blk->raw_block = NULL;
f->log_curr_pos = 0;
f->log_length = 0;
f->pdata = pphys->data;
f->pdata_end = f->pdata + MEMFILE_DATA_SIZE;
f->raw_head = NULL;
f->error_code = 0;
/* Tag the compressor state as uninitialized */
f->compressor_initialized = false;
return 0;
}